Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The properties of chalcogenide phase change materials have long attracted the scientific community due to a combination of state retention (i.e., memory) and a large contrast in electrical and optical properties between different solid phases. The last decade has witnessed a vast interest in utilizing this material family for optics and photonics, given their large refractive index modulation, nonvolatility—elusive in optics—and straightforward integration into photonic devices. Thus, designing new optical phase change materials (O-PCMs) and demonstrating high-performance applications have become fast-growing research topics. However, advances in O-PCMs have predominantly followed empirical device developments, driven by their promise in trending technological applications. Nonetheless, a growing interest in revealing their materials science intricacies is driving the much-needed effort toward a holistic understanding and codesign of O-PCMs, which is required to fill knowledge gaps, expand the materials library, and solve the most pressing device performance challenges.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract Chalcogenide phase change materials (PCMs) have become one of the most promising material platforms for the Optics and Photonics community. The unparalleled combination of nonvolatility and large optical property modulation promises devices with low‐energy consumption and ultra‐compact form factors. At the core of all these applications lies the difficult task of precisely controlling the glassy amorphous and crystalline domains that compose the PCM microstructure and dictate the optical response. A spatially controllable glassy‐crystalline domain distribution is desired for intermediate optical response (vs. binary response between fully amorphous and crystalline states), and temporally resolved domains are sought after for repeatable reconfiguration. In this perspective, we briefly review the fundamentals of PCM phase transition in various reconfiguring approaches for optical devices. We discuss each method's underpinning mechanisms, design, advantages, and downsides. Finally, we lay out current challenges and future directions in this field.more » « less
An official website of the United States government
